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70 * Attempt Questions 1-10
+ Allow about 15 minutes for this section
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* Attempt questions 11-14
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SECTION |

10 marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. The number of different arrangements of the letters of the word NORTHERN which begin

and end with the letter N is:

8!
2!

A)

6!
2!

B)
8!
C) Y

6!
D) 2o

2. Given f(x) = v/x — 1, what are the domain and range of £~ (x) respectively?
A) x>0y>-1
B)x>-1,y>-1
C)x=>-1,y=0

D) x>1,y>0



) . sing
3. Find lim —2
x—0 5x

A) =

15

B)

C)

D) 15

. . . .. 1 2
4. Which of the following is the primitive of N

A) %sin‘l(Bx) +c
B) ésin‘1(3x) +c
C) %sin‘1 (%x) +c

D) gsin‘l (%x) +c

5. The polynomial P(x) = 8x3 + ax? — 4x + 1 has a factor of 2x + 1.
What is the value of a?
A) -8
B) 0
C) 3

D) 8



6. The diagram below shows the graph of a function

};A
27T
< —>
_I3 () 3 X
277k
v

A possible equation for the function is:

A) y= isin‘1(3x)
1 . _
SPmE

C) y =4sin™?! (g)

D) y = 4sin~1(3x)

7. Given the points A(1,3), B(4,5) and C(2,), it is known that AB is perpendicular to BC.
What is the value of r?
A) -8
B) -3
C) 3

D) 8



8. A Bernoulli variable, X, has a value of p such that E(X) = 5Var(X).

Given that p # 0, what is the value of p?
A) 5
B) -
C) -

3
D) ¢

9. Suppose that f(x) is a continuous function and that flsf(x)dx = —6and

fzs 3f(x)dx = 6.

What is the value of flzf(x)dx?
A) -8

B) —12

C) 8

D) 12



10. The graph of the function f(x) is drawn below

4

-4

Which of the following best represents the graph of y = |f(|x])|?

A) B)
-2
C) D)

End of Section |




SECTION II

60 marks

Attempt Questions 11-14.

Allow about 1 hour and 45 minutes for this section.
Answer each question on a new page in the answer booklet.

In questions in Section 11, your responses should include relevant mathematical reasoning and/or
calculations.

Question 11 (15 marks) Start a NEW page.

a) Solve for x: 2 >2 3
x—1
b) Find the value of sin15° in simplest exact form 2
c) Find the Cartesian equation for the function with these parametric equations: 1
x=2t+1
y=t—2

d) A committee of five is to be chosen from six men and seven women.
(i) How many committees are possible if there are no restrictions? 1

(i) How many committees are possible if there are more women than men? 2

Question 11 continues on page 9



e) A-rock drops into a lake, creating a circular ripple. The radius of the ripple increases 2
from 0 cm, at a constant rate of 6 cm/s.

At what rate is the area enclosed within the ripple increasing when the radius is 12 cm?

f) (i) Write v/3cos@ — sin8 in the form Rcos(6 + ) 2

(ii) Hence, or otherwise, solve v3cos8 — sinf = 1for0 < 6 < 2m 2



Question 12 (15 marks) Start a NEW page.

a) Find the exact value of sin (Zcos‘1 g)

b) The polynomial P(x) = ax® + bx? + ¢ has a double root at x = 3 and has
remainder —36 when divided by x + 3.

Find the values of a, b and c.

c) Use the substitution u = x — 3 to evaluate

f: xvVx —3dx

9
d) Find the term independent of x in the expansion of (3x4 - x_12)

e) Prove by mathematical induction that 7"* — 3™ is divisible by 4 forn > 1

f) State the range of y = cos~1(cosx)

10



Question 13 (15 marks) Start a NEW page.

a) Consider the points A(2, —2) and B(2, 6). Using vector methods or otherwise,

show that LAOB = 117° to the nearest degree, where O is the origin.

b) A container of water, heated to 100°C, is placed in a cool room where the temperature is
maintained at a constant —5°C.

After t minutes, the rate of change of the temperature, T°C of the water is given by
d_T
dt

= —k(T + 5), where k is a constant.
(i) Assuming the function T = Ae™*¢ — 5, where A is a constant, is a solution to
the above differential equation, find the value of A.

(ii) After 30 minutes, the water temperature falls to 20°C.

Find, to the nearest degree, the water temperature after a further 10 minutes.

c) Jiirgen Klopp enters a football tipping competition. The probability that he chooses the

winner of any one game is 0.7. In a competition where there are 9 games in a round:
(i) What is the probability that he will choose exactly seven winners?

(if) What is the probability that he will choose less than seven winners?

Question 13 continues on page 12
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d) (i) Find j—x (xtan~1x)

.- . 1 . .
(ii) Hence, find fo tan~1x dx, leaving your answer in exact form

e) The diagram below shows part of the graph y = 1 — cosx.

Find the volume generated when the area bounded by y = 1 — cosx, x = g

3 . )
X = ?” and the x-axis is rotated about the x-axis.

Leave your answer in exact form.

12



Question 14 (15 marks) Start a NEW page.

X is the point on AB such that AX: XB = 1: 2 and BY = 5a — b. OA = 3a and OB = 6b.

(i) Express AB in terms of a and b

(ii) Hence or otherwise, prove 0X = EO_Y)

Question 14 continues on page 14
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b) Samsung does a quality check of their latest television model. In a sample of 160

televisions, 8 were found to be defective.

(1) It is known that the sample proportion is approximately normally distributed. 2
Show that the sample mean is 0.05 and the sample standard deviation is
0.01723.
(ii) The Hilton group needs to purchase 160 televisions for a new hotel. 3
By referring to the z-score table provided, estimate the probability that the
number of defective televisions purchased is at least 4 but no more than 6.

Z .00 01 02 .03 04 .05 .06 .07 .08 .09
0.0 | .50000 .50399 50798 51197 51595 51994 52392 52790 53188 53586
0.1 | 53983 54380 54776 55172 55567 55962 56356 56749 57142 57535
0.2 | 57926 58317 58706  .59095  .59483 59871 60257 60642 61026 61409
03 | 61791 62172 62552 62930  .63307 63683 64058 64431 64803 65173
0.4 | 65542 65910 66276 66640 67003 67364 67724 68082 68439 68793
0.5 | 69146 69497 69847 70194 70540 70884 71226 71566 71904 72240
0.6 | 72575 72907 73237 73565 73891 74215 74537 74857 75175 75490
0.7 | 75804 76115 76424 76730 77035 77337 77637 77935 78230 78524
0.8 | 78814 79103 79389 79673 79955 80234 80511 80785 81057 81327
0.9 | 81594  8I859 82121 82381 82639 82894 83147 83398 83646 83891
1.0 | 84134 84375 84614 84849 85083 85314 85543 85769 85993 86214
1.1 | 86433 86650 86864 87076 87286 87493 87698 87900 83100 88298
1.2 | 88493 88686  .88877  .89065  .89251 89435 89617 89796 89973 90147
1.3 | 90320 90490 90658 90824 90988 91149 91309 91466 91621 91774
1.4 | 91924 92073 92220 92364 92507 92647 92785 92922 93056 93189

Question 14 continues on page 15
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X _ =X

c) (i) Show that y = has no stationary points.

e
eX+e X
(ii) Given that y = +1 are horizontal asymptotes, sketch the curve.

(iii) For k > 0, consider the area enclosed by the curve, the linesy = 1, x = 0 and

x = k.
k
Show that this area can be expressed in the form n (ekL)

+ek

(iv) Hence, deduce that for all values of k, the area found in part (iii) is always less

than In2.

End of paper
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5.P(-%) =0 9.J te)dr = § e s B Hocde
8(=4)"+ (=5 a = 4(~¥)+]=0 6= (*te)de +2
2+%a =0 urlz-Pfx)afac = -8
Caz-7 ®)
a = -8
< 0. ©

o~ T~
b For yesi'se, D:-l4x gl R :-F YT |

3z X o zordw bx V'PH"I’&I)

I Ailadion Hin

- [ ,
%:4Sih|(3)l D '—3$‘xés 1 R: _ZT\&..<QTT

rF ~ ¥ 7




Student Name: Teacher Name:

Queshon ||
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>x-|
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Question |2
0\) Si (2005""2’) Let cos”

!
2
2
=

A

COSA=

Nf&
@l

SinA=

Wi win |

sin(2c05 %) = sin24
= ZsinA cosA

<
=2 Ny

= Hs

!

E)P(x):axﬁbx% *

P’(x) = 3ox?®+2bx

P(2)=P'(z) =0 P(-3)=-3¢

P(2) = 2%Fa +9btc

2Fa+9%h+C =0 —0

P'(2)= 2Fa+6b

2%+ bb=0 —@

P(-3)=-2%a +qb+c

2%+ +o=-3, B

0-®

2%a + 9 +¢ =0
—2%a +9b+c =-3

sub_inh 2

2% (% )+ =0

IR + 6b =0

b=-3

Sub i (D

2 - =0
HEHIET

=
1

Z 2ESer =
= b= 9
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Question 13
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Question |4
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